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Abstract

Stroke demands rapid and precise diagnosis. Recent advancements in machine learning (ML) have facilitated its integration with magnetic resonance imaging 
(MRI) for assessing acute ischemic stroke (AIS). This systematic review delves into the utilization of ML algorithms in MRI-based AIS diagnosis and prediction, 
highlighting their prospective clinical implementation.
This systematic review followed PRISMA guidelines, conducting a thorough search across PubMed, Web of Science, Scopus, and Google Scholar. Inclusion 
criteria focused on studies predicting acute stroke onset time and identifying acute ischemic stroke within the therapeutic window using MRI data for AI algo-
rithms. Only studies post January 1, 2018, were included. Excluded were studies involving chronic stroke patients, computed tomography (CT) scans, other 
imaging modalities, or lacking AI components.
Twelve articles met the criteria, primarily aiming to predict tissue status or ischemic core using deep learning techniques like CNNs, U-Nets, autoencoders, and 
GANs, often with attention mechanisms or pretrained networks. Magnetic resonance imaging modalities included ADC, DWI, FLAIR, and T2W, with some 
using advanced techniques like PWI and pCASL. Model performances varied, with some achieving high accuracy in identifying patients within treatment win-
dows and segmenting ischemic regions. One study generated synthetic MRI data, while another accelerated MRI acquisition.
Machine learning algorithms exhibit promise in MRI-based AIS diagnosis and prediction, especially in segmenting ischemic regions and classifying patients 
for treatment. However, validation on larger and diverse cohorts is essential for robustness. Integrating ML techniques into MRI protocols could enhance AIS 
diagnosis and treatment planning efficiency and accuracy in the future.
Keywords: Machine learning, MRI, stroke

INTRODUCTION
Stroke is a serious health issue that has significant impacts on individuals, communities, and economies worldwide.1 It results in disabilities and 
death, and it also imposes a substantial economic burden, with estimated costs reaching approximately 34 billion dollars each year.2,3 There are 
2 primary types of stroke, which are ischemic stroke and hemorrhagic stroke. Ischemic stroke is the more common type, accounting for approxi-
mately 87% of all stroke cases. Ischemic stroke occurs when there is a blockage or clot in a blood vessel that supplies blood to the brain, leading 
to a lack of oxygen and nutrients, and ultimately causing damage to the brain tissue. Hemorrhagic stroke, on the other hand, occurs when there 
is bleeding in the brain due to a ruptured blood vessel. Both types of stroke can have severe consequences and require prompt medical attention.3 
During an acute ischemic stroke (AIS), there are 2 distinct areas of the brain that are affected: the penumbra and the infarction core. The penumbra 
is a region surrounding the infarction core that is considered reversible, meaning that brain cells in this area can still recover if blood flow is restored 
promptly. The infarction core, on the other hand, is an irreversible ischemic area, where brain cells have already been damaged due to the lack of 
oxygen and nutrients. The American Heart Association/American Stroke Association (AHA/ASA) recommends 2 primary treatment options for 
restoring blood flow in AIS, which are thrombolysis with tissue plasminogen activator (tPA) administered either intra-arterially or intravenously, 
and mechanical thrombectomy, also known as clot retraction.4 Mechanical thrombectomy is considered the gold standard for the treatment of large 
vessel occlusions in acute ischemic stroke.5 However, both tPA thrombolysis and mechanical thrombectomy are time-sensitive procedures that are 
typically performed within specific time windows after the onset of stroke. Tissue plasminogen activator thrombolysis is usually done within 4.5 
hours from the onset of stroke, while mechanical thrombectomy is typically performed within 6 hours from the onset of stroke.6 The importance of 
timely intervention in acute ischemic stroke cannot be overstated, as theoretical calculations suggest that every 1.6 minutes saved from the onset 
time of stroke could potentially spare approximately 3.1 million neurons from damage or death, leading to improved outcomes.7 Recent prospec-
tive randomized studies, such as the DAWN study8 and the DEFUSE-35 study, have expanded the treatment window for endovascular intervention 
in acute ischemic stroke cases, with the DAWN study showing that intervention can be extended up to 24 hours from the onset of stroke, and 
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the DEFUSE-3 study demonstrating the safety of intervention up to 
16 hours.5,9,10

One challenge in treating AIS is determining the exact time of stroke 
onset, particularly for patients who experience a stroke during their 
sleep or unwitnessed strokes, known as wake-up stroke (WUS), which 
accounts for a significant portion of acute ischemic stroke cases.11 
Wake-up stroke patients have traditionally been excluded from treat-
ment due to the inability to accurately ascertain the time of stroke onset. 
However, the “Wake Up Trial,” conducted in 2018, was a ground-
breaking study that challenged the traditional time-based approach for 
AIS treatment for intravenous thrombolysis. The study enrolled 503 
patients who had an AIS with an unknown time of onset. Instead of 
relying solely on the time-based approach, the “Wake Up Trial” used 
advanced MRI imaging features, including the mismatch between dif-
fusion-weighted imaging (DWI) and fluid-attenuated inversion recov-
ery (FLAIR) in the region of ischemia, to guide thrombolysis treatment 
decisions. Diffusion-weighted imaging is a sensitive imaging tech-
nique that can detect early changes in brain tissue affected by ischemia, 
while FLAIR is a sequence that can help identify the presence of older, 
established infarcts.12 The results of the “Wake Up Trial” showed that 
thrombolysis treatment guided by MRI features led to better outcomes 
compared to a control group that did not receive thrombolysis. Patients 
who received thrombolysis based on MRI findings had improved func-
tional outcomes and higher rates of functional independence at 90 
days compared to the control group.13,14 Based on these findings, the 
most recent guidelines from the AHA recommend using MRI to evalu-
ate the suitability of interventions in the WUS population.4 However, 
evaluating this mismatch can be subject to significant variability when 
multiple readings or radiologists are involved.15 Furthermore, typical 
MRI stroke protocols may take 10-15 minutes to perform, even with 
the advanced rapid protocols. Acute ischemic stroke imaging with MRI 
creates a mean delay of 18 minutes in workflow when compared to 
computed tomography (CT) scanning.16,17 It is important to note that 
reducing the intervention time by even 15 minutes to restore blood 
flow can potentially lead to improved outcomes with reduced disabil-
ity for a significant number of patients.18 To identify relevant imag-
ing findings in WUS patients efficiently and accurately can save time 
and standardize evaluation. Despite ongoing efforts to optimize stroke 
imaging, there is still a lack of timely and consistent stroke detection 
and triage methods that can be implemented immediately and in a 
standardized manner.

Machine learning (ML) has recently gained popularity and been used 
for many medical image acquisition and analysis procedures, includ-
ing acquiring and reconstructing fast MR imaging data,19 segmenting 
lesions on MR images,20 classification of disease characteristics based 
on MRI,21 and increasing the image spatial resolution.22 Several studies 
have been reported for the use of machine learning algorithms in imag-
ing WUS patients.23-25 The main attempt of these studies is to enhance 
clinical outcomes by minimizing treatment delays, even if it is only by 
a few minutes. Machine learning algorithms are already extensively 
employed in patient triage for AIS treatments using computed tomog-
raphy (CT).26 Multiple studies have shown that automated approach 
based on CT is non-inferior to assessments made by experienced 
neuroradiologists.27-29

This systematic review aims to provide a comprehensive overview 
of recent advancements in utilizing ML algorithms for imaging AIS 
patients with MRI, with a particular emphasis on their potential imple-
mentation in clinical practice. By synthesizing current evidence and 

highlighting emerging trends, this review aims to elucidate the evolv-
ing landscape of AIS imaging and the transformative role ML may 
play in enhancing diagnostic accuracy, prognostication, and patient 
management strategies. Ultimately, the integration of ML-driven MRI 
analysis into routine stroke care pathways has the potential to revolu-
tionize the field, enabling more precise and personalized approaches to 
AIS diagnosis and treatment.

METHODS
This systematic review followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines and 
conducted a search on PubMed, Web of Science, Scopus, and Google 
Scholar specifically targeting peer-reviewed articles in English. The 
predetermined search terms included “artificial intelligence,” “machine 
learning,” or “deep learning,” in combination with “acute ischemic 
stroke,” “magnetic resonance imaging,” “acute ischemic stroke onset 
time,” or “ treatment time window.” The inclusion criteria encom-
passed studies that focused on predicting acute stroke onset time using 
magnetic resonance imaging (MRI) or identifying AIS within the thera-
peutic time window using MRI, and included wake-up stroke and acute 
stroke patients. Additionally, the studies that utilized raw MRI data as 
input for artificial intelligence algorithms and published after January 
1, 2018, were selected. Studies involving chronic stroke patients, 
computed tomography, other imaging modalities, or lacking artificial 
intelligence were excluded from the review. Figure 1 demonstrates an 
AIS patient who had the progression of ischemic stroke from the acute 
phase (within 6 hours) to the acute–subacute stage (beyond 6 hours) in 
the M1 segment of the middle cerebral artery.

RESULTS
A total of 12 papers met all inclusion and exclusion criteria. The sum-
mary of these studies is given in Table 1.

The majority of studies aimed to predict tissue at risk and the isch-
emic core using artificial intelligence. However, there were 2 excep-
tions. One study conducted by Benzakoun et al19 primarily focused on 
the generation of synthetic data, and another conducted by Verclytte 
et al.30 focused on accelerating image acquisition. All the mentioned 
studies had cohorts larger than 100 patients except the study conducted 
by Qun-Zhang.23 Furthermore, the majority of MR images used in these 
studies were acquired on 1.5 T or 3T scanners.

Zhu et al31 conducted a study aiming to segment the ischemic core 
in DWI and FLAIR images and classify lesions based on the onset 
time of stroke. The study utilized a multi-institutional cohort, and all 
images were acquired using a 3T clinical MR scanner. In this study, 
an automatic machine learning method was proposed to classify time 
since stroke (TSS) as less than or more than 4.5 hours. A cross-modal 
convolutional neural network (CNN) was developed to achieve 
accurate segmentation of stroke lesions from DWI and FLAIR 
images. For the segmentation tasks, 5 different EfficientNet-B0 
based U-Net algorithms were employed.32 Subsequently, some fea-
tures were extracted from the DWI and FLAIR images based on the 
segmented regions of interest (ROI) using Pyradiomics.33 Finally, 
these extracted features were provided as inputs into machine learn-
ing models to identify the TSS. Evaluation metrics such as Dice 
similarity coefficient, sensitivity, specificity, and accuracy were 
used to assess the performance of the proposed model. Remarkably, 
the model achieved relatively high sensitivity and specificity, both 
exceeding 0.80, in identifying patients who had less than 4.5 hours 
since the onset of a stroke.
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In addition, Ho and colleagues conducted studies in 201834 and 201924 
focusing on determining stroke time onset utilizing MRI through the 
application of deep learning, with a specific emphasis on autoencoders. 
Although these studies were innovative, they had the drawback of utiliz-
ing only their institutional cohort for analysis. The studies utilized MRI 
images acquired on 1.5 and 3 T clinical scanners. The imaging modali-
ties included DWI, Apparent Diffusion Coefficient (ADC), Perfusion-
Weighted Imaging (PWI), and FLAIR. Perfusion-weighted imaging 
images were used to generate perfusion parameters such as mean transit 
time (MTT), time to peak (TTP), cerebral blood volume (CBV), cere-
bral blood flow (CBF), and time to maximum (Tmax). A threshold of 
Tmax > 6 seconds was employed for segmentation of the ROIs. In the 
2018 study, baseline features were extracted by determining the mean 
intensity values of the images at ROIs. Deep learning algorithms based 
on autoencoders were then used to extract hidden PWI features. Both 
baseline and hidden features were utilized to devise machine learning 
algorithms. The classification task, aimed at identifying a TSS of less 
than 4.5 hours using only baseline features, achieved an area under the 
curve (AUC) of 0.57. However, the inclusion of both baseline and deep 
features enhanced the classification task, elevating the AUC to 0.68.34 
In a subsequent study in 2019, the same group enriched the extraction 
of baseline features by incorporating additional descriptive features, 
namely mean, median, skewness, and kurtosis, while maintaining the 
deep learning aspect of the study intact. The combination of autoen-
coder-based deep features and baseline features achieved the best perfor-
mance in predicting TSS of less than 4.5 hours, with an AUC of 0.76.24

In 2020, Yu et al35 embarked on a study aimed at predicting the 
final ischemic core, an area of permanent tissue damage following a 
stroke, using baseline MRI and deep learning techniques. This study 

brought together 182 patients from 2 separate cohorts across differ-
ent institutions. The patients underwent clinical MR scans at 1.5 T 
and 3 T, employing various imaging modalities, including DWI, PWI, 
T2-weighted MRI (T2W), and FLAIR. The team used PWI to obtain 
perfusion parameter maps and established tissue-at-risk parameters 
based on a Tmax exceeding 6 seconds, while identifying the ischemic 
core with an ADC below 620 × 10−6 mm2/s. The “ground truth” data, 
or verified data used for comparison with predictions, was sourced 
from T2W-MRI and FLAIR scans taken 3–7 days post stroke. A deep 
learning model utilizing an attention-gated U-Net, which incorporated 
consecutive slices of various imaging data and masks of Tmax and 
ADC, achieved a median AUC of 0.92 in identifying the final infarc-
tion without accounting for any subsequent reperfusion in the patients. 
Similarly, in 2021, the same researchers aimed to estimate tissue at 
risk and the ischemic core using the same deep learning approach.36 
This study exhibited superiority compared to the former study in terms 
of including more patients from 3 prospective multicenter stroke tri-
als. The MR images were acquired at 1.5 T and 3 T MRI scanners, 
employing the same imaging modalities as the previous study. An 
attention-gated U-Net, with an identical architecture to the aforemen-
tioned study, was utilized. It incorporated 5 consecutive slices of DWI, 
ADC, Tmax, MTT, CBF, and CBV images, along with masks of Tmax 
and ADC, as inputs. The key difference between these 2 studies cen-
tered on considering the patient’s reperfusion status during the training 
phase. This status was categorized into minimal (20%), partial (20%-
80%), and major (80%) reperfusion, determined based on a 4-24-hour 
follow-up PWI. The segmentation task utilizing the attention-gated 
U-Net outperformed the thresholding method that relied on DWI/PWI 
thresholds. The proposed deep learning method achieved an AUC of 
0.97 for predicting the ischemic core.

Figure 1. The images demonstrate the progression of ischemic stroke from the acute phase (within 6 hours) to the acute–subacute stage (beyond 6 hours) in the 
M1 segment of the middle cerebral artery. A–C, acute ischemic stroke within 6 hours; D–F, acute–subacute stage of ischemic stroke beyond 6 hours. A and D, 
DWI with b-value of 1000 × 10−6 s/mm2; B and E, ADC map; C and F, FLAIR image.
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Table 1. Summary of MRI of Ischemic Stroke Studies Utilizing Artificial Intelligence

Study

Number 
of 

Patients

MRI 
Scanner 

Field 
Strength AI Tasks MRI Sequences AI Methods Conclusion

Zhu et al31 268 3 T Segmentation and 
classification

FLAIR and 
DWI

Deep CNN (U-Net) for segmentation, 
feature extraction by Pyradiomics, and 
ML for classification

Segmentation task dice score for 
FLAIR <0.80, dice score for DWI 
>0.80, classification task with ML 
using features extracted from manual 
labeling and segmentation ROI are 
around 0.80.

Chung Ho et al24 181 1.5 and 3 
T

Classification PWI, FLAIR, 
DWI, and ADC

Deep feature maps were extracted 
from PWI by deep autoencoder. ML 
classification was used for 
morphological and descriptive features 
including mean, median, etc. The total 
number of baseline features = 104, 
deep features= 384

Classification task with ML achieved 
an AUC of 0.76 using perfusion 
parameters map + deep features

Chung Ho et al34 105 1.5 and 3 
T

Classification PWI, DWI, 
FLAIR and 
ADC

Deep feature maps were extracted 
from PWI by deep autoencoder. ML 
classification was used for the 
intensity value of perfusion parameter 
maps, DWI, FLAIR and ADC. The 
total number of baseline features=7

Classification tasks with ML achieved 
an AUC of 0.57 using baseline 
features. The classification task with 
ML achieved an AUC of 0.68 using 
baseline and deep features

Yu et al36 237 1.5 and 3 
T

Segmentation DWI, ADC, 
Tmax, MTT, 
CBV, CBF

Attention-gated U-Net was used for 
segmentation tasks. Tmax>6 seconds 
was used to define tissue at risk and 
ADC<620 × 10−6 mm2/s for ischemic 
core. T2 and FLAIR acquired at 3-7 
days were used as ground truth.

Segmentation task with attention-
gated U-Net outperformed 
thresholding method which uses DWI/
PWI thresholds. The proposed deep 
learning method achieves 0.97 AUC to 
predict ischemic core.

Do et al.37 390 1.5 T Classification DWI ASPECT score prediction with 
recurrent residual convolutional neural 
network

Proposed model RRCNN 
outperformed the pre-trained CNN 
with accuracy of 87.3

Nazari-Farsani 
et al38

445 1.5 and 3 
T

Segmentation DWI, ADC, and 
thresholded 
ADC as input 
and T2-FLAIR 
and DWI for 
ground truth

Attention gated U-Net is used for 
delineation ischemic core.

The DCNN model predicted the final 
stroke lesions significantly better than 
the simple ADC thresholding method 
with AUC of 0.91 with dice similarity 
coefficient threshold of 0.50

Benzakoun et al19 1416 1.5 T Synthetic data 
generation

DWI and 
FLAIR

Generative adversarial network was 
used for generation of synthetic 
FLAIR from DWI images.

Synthetic FLAIR had diagnostic 
performances similar to real FLAIR in 
depicting DWI–FLAIR mismatch

Verclytte et al30 173 3 T MR reconstruction T2W, T2W*, 
FLAIR, and 
DWI

Deep learning methods were used for 
acceleration of acquisition

The study highlights the high 
performance and reproducibility of the 
ultrafast MRI protocol in the acute 
ischemic stroke assessment

Wang et al39 137 1.5 and 3 
T

Segmentation pCASL, ADC, 
and Tmax

High-resolution 3Dnet were trained by 
ASL, Tmax, and ADC. PWI images 
were used for ground truth.

The study trained DL models with an 
input of noncontrast ASL images, 
using the hypoperfusion lesion 
observed on DSC MRI as the label. 
The model achieved an accuracy of 
0.92 for image-based decision.

Yu et al35 182 1.5 and 3 
Te

Segmentation DWI, ADC, 
Tmax, MTT, 
CBV, CBF

Attention-gated U-Net was used for 
segmentation tasks. Tmax>6 sec was 
used to define tissue at risk and 
ADC<620 × 10−6 mm2/s for ischemic 
core. T2WI and FLAIR acquired at 
3-7 days were used as ground truth.

Segmentation task with attention-
gated U-Net outperformed 
thresholding method which uses DWI/
PWI thresholds. Deep learning 
methods achieved moderate to 
excellent segmentation tasks for both 
ischemic core and tissue at risk.

Zhang et al25 422 1.5 and 3 
T

Classification T2W, DWI, and 
FLAIR

Attention-gated pre-trained weights 
were used for feature extraction and 
classification in a single slice. 
Attention-gated 3D U-Net and CNN 
from scratch was used for feature 
extraction and classification.

The pretrained 2D model achieved the 
highest performance metrics with a 
sensitivity of 0.70 and a specificity of 
0.81 in classifying TSS < 4.5 hours.

Zhang et al23 84 3 T Classification ADC, DWI, and 
T1W

Radiomics features were used for 
feature extraction. ML and DL were 
used for classification.

DL model achieved the highest 
performance with an accuracy of 0.72 
than conventional ML methods.
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Furthermore, Do et al37 conducted a study with the aim of classify-
ing DWI images based on Alberta Stroke Program Early CT Score 
(ASPECTS) using deep learning algorithms. The study included 390 
DWI scans acquired on a 1.5 T MRI scanner. The researchers devel-
oped a classifier algorithm to differentiate between low (1-6) and high 
(7-10) DWI-ASPECTS groups. Two different deep learning algorithms 
were compared in the study, a recurrent residual convolutional neural 
network (RRCNN) and a pre-trained 3D CNN, as well as a 3D CNN 
trained from scratch. The performance of these algorithms was evalu-
ated and compared. The researchers concluded that the proposed model 
based on RRCNN outperformed both the pre-trained 3D CNN and the 
3D CNN trained from scratch. The RRCNN achieved an accuracy of 
0.87 in the classification task, demonstrating its superior performance 
in distinguishing between low and high DWI-ASPECTS groups.

Additionally, Nazari-Farsani et al38 conducted a study aiming to predict 
the final ischemic core from baseline DWI data using deep learning. 
The strength of this study lies in its patient cohort, which consisted 
of 445 patients recruited from multiple institutions. The ground truth 
for the final ischemic core was determined using T2W and FLAIR 
scans taken 3-7 days after stroke onset. For the segmentation tasks, an 
attention-gated U-Net was employed. The inputs to the model included 
DWI, ADC, and thresholded regions with ADC values of less than 620 
× 10−6 mm2/s. The model generated a voxel-by-voxel probability map 
of tissue infarction as the output. A deep convolutional neural network 
(CNN) model outperformed the simple ADC thresholding method in 
predicting the final stroke lesions. It achieved an AUC of 0.91 with a 
dice similarity coefficient threshold of 0.50, demonstrating its superior 
performance and accuracy in segmenting the ischemic core.

Moreover, Benzakoun et al19 conducted a study with the objective of 
generating synthetic FLAIR images from DWI to assess the DWI-
FLAIR mismatch sign as a surrogate for identifying patients who 
experienced acute ischemic stroke within 4.5 hours of onset. The study 
included a substantial cohort of 1416 patients. The deep learning model 
employed in this study was developed based on an edge-aware genera-
tive adversarial network (GAN). It was trained on a dataset consisting 
of DWI, ADC map, and FLAIR images. After completing the train-
ing process, synthetic FLAIR images were generated for the test set 
using the DWI and ADC images. The study’s findings demonstrated 
that by eliminating the need for real FLAIR images in the MRI protocol 
and instead generating FLAIR images during the acquisition of other 
sequences, a significant time-saving of approximately 25% can be 
achieved during scanning. This approach offered a promising strategy 
for improving efficiency in acute ischemic stroke imaging protocols.

In another work, Verclytte et al30 conducted a study with the objec-
tive of accelerating the acquisition of MRI protocols using deep learn-
ing reconstruction techniques. The study involved 173 patients who 
underwent MRI scans with a 3T scanner in a prospective design. 
Each patient’s MRI protocol consisted of reference acquisitions of 
T2-FLAIR, DWI, and SWI, which had a total duration of 7 minutes 
and 54 seconds. Additionally, accelerated multi-shot EPI counterparts 
for T2-FLAIR and T2* were obtained, along with a single-shot EPI 
DWI scan, which had a shorter duration of 1 minute and 54 seconds. To 
achieve accelerated MRI acquisition, the researchers employed an ultra-
fast approach using multiple echo planar imaging (EPI). Furthermore, a 
new deep learning reconstruction technique was integrated to enhance 
the signal-to-noise ratio (SNR) of the acquired images. By leveraging 
this ultra-fast MRI protocol, which included multi-shot EPI counter-
parts for T2, T2*, and T2-FLAIR, as well as fast single-shot EPI-based 

DWI, the duration of the MRI protocol was reduced by 6 minutes. 
Importantly, the study found that the differential diagnoses obtained 
using the accelerated MRI protocol were similar to those obtained with 
the reference acquisitions.

Besides, Wang et al39 conducted a study with the objective of delineat-
ing the ischemic core and tissue at risk in 3-dimensional (3D) pseudo 
continuous Arterial Spin Labeling (pCASL) images and DWI, using 
PWI as the ground truth. The study included a total of 137 patients 
with acute ischemic stroke, and images were acquired using 1.5 T 
and 3 T clinical MRI scanners. The hypoperfusion area was identi-
fied using Tmax > 6 seconds as the ground truth. The researchers 
employed Highres3DNet,40 a deep learning algorithm that was trained 
using CBF and ADC images as well as the label of Tmax. The eligibil-
ity for endovascular treatment was retrospectively determined based 
on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial.9 
Subsequently, the trained deep learning algorithm was applied to 12 
3D pCASL datasets without fine-tuning of parameters. The algorithm 
demonstrated the ability to predict the hypoperfusion region defined 
by dynamic susceptibility contrast in pCASL, achieving a voxel-wise 
AUC of 0.958.

On top of that, Zhang et al25 conducted a study with the aim of predict-
ing the onset time of acute ischemic stroke. The study included a total 
of 422 patients who underwent MRI scans using 1.5 T and 3 T clinical 
MRI scanners. The inputs for the deep learning architecture consisted 
of DWI, FLAIR, and T2W MRI. The proposed approach utilized a 
transfer learning method within the same domain, focusing on adapting 
the model for an intra-domain task. Initially, the model was trained on 
a relatively simpler clinical task, specifically stroke detection. This ini-
tial training served as a foundation for the subsequent fine-tuning and 
refinement of the model using various binary thresholds of TSS, aiming 
to improve its performance and adaptability. The proposed approach 
was tested using both 2D and 3D deep learning architectures, includ-
ing an attention-gated pre-trained 2D CNN, 3D U-Net, and 3D CNN 
trained from scratch. Among these models, the pre-trained 2D CNN 
achieved the highest performance metrics with a sensitivity of 0.70 and 
a specificity of 0.81 in classifying TSS of less than 4.5 hours.

Lastly, Qun Zhang et al23 conducted a study with the objective of pre-
dicting the onset time of acute stroke within the intervention window. 
The study involved 84 patients who underwent MRI scans using a 3 T 
clinical MRI scanner. Baseline images including ADC, DWI, and T1W 
MRI were acquired for each patient. To extract relevant information, 
ROIs were manually segmented on the DWI images. Radiomics fea-
tures were then extracted from the ADC, DWI, and T1W MRI images 
based on the segmented ROIs, following image registration. Various 
preprocessing techniques and feature selection methods were applied 
to refine the data. Both conventional machine learning algorithms and 
deep learning algorithms were employed for the classification task. The 
machine learning algorithms utilized the selected features to predict the 
onset time of acute stroke, while the deep learning algorithm leveraged 
the power of neural networks for the same task. Notably, the DL model 
achieved the highest performance among the different methods tested, 
achieving an accuracy of 0.72.

DISCUSSION
The studies included in this review covered different aspects of MR 
imaging of acute ischemic stroke utilizing machine learning algo-
rithms. The primary objectives of most studies were to predict tissue at 
risk, identify the ischemic core, and classify patients who experienced 
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acute ischemic stroke within the treatment window. However, 2 studies 
had alternative goals, which focused on generating synthetic data19 and 
accelerating MR image acquisition.30

The extensive utilization of machine learning algorithms in segmenta-
tion tasks is of utmost importance in accurately detecting the infarct 
core from cross-sectional imaging. This is particularly significant as 
the determination of the infarct core plays a vital role in assessing eli-
gibility for revascularization procedures in treatment.41 Additionally, 
given the time-sensitive nature of acute ischemic stroke treatment, it 
is not surprising that one of the major applications of machine learn-
ing has been the identification of patients within the appropriate treat-
ment time window. Various deep learning techniques were employed 
in these studies, including CNNs, U-Net, autoencoders, and GANs, 
demonstrating their potentials in segmenting the ischemic core, clas-
sifying lesions based on onset time, predicting tissue at risk, and 
expediting the MRI protocol. The majority of MRI protocols used 
in these studies primarily included ADC, DWI, FLAIR, and T2W 
images. The integration of advanced imaging techniques such as PWI 
and pCASL further improved the accuracy of the deep learning mod-
els. However, it is necessary to take into account the increase in total 
scan time, since a delay of 10 minutes in treatment was reported to 
cost approximately $249 million annually in a recent health econo-
metrics study.42 Furthermore, the utilization of attention-gated and 
pretrained networks enhanced the model performances. An attention-
gated network selectively focuses on relevant features or regions of 
an input using an attention mechanism, while a pretrained network 
refers to a model that has been previously trained on a related task or 
a large dataset, providing a starting point and improving subsequent 
model performance. Only 1 study, which was conducted by Zhang et 
al,25 employed intra-domain task adaptive transfer learning to enhance 
the performance of the model, where the model was initially trained 
on stroke detection to enhance its performance. The use of machine 
learning algorithms with deep features has also been reported to 
enhance accuracy.34

CONCLUSION
The objective of our research is to provide an overview of the latest 
developments in the utilization of ML algorithms for MRI-based imag-
ing of patients with AIS. The main focus is on how these advance-
ments could potentially be applied in real-world clinical settings. To 
accomplish this goal, the PRISMA guidelines were followed, and clear 
inclusion and exclusion criteria were established. A total of 12 relevant 
papers were identified and included.

To the best of our knowledge, the significance of this study lies in the 
provision of a novel literature review regarding the utilization of MRI-
based machine learning in patients with AIS. Typically, AIS imaging 
relies on CT scans in the emergency room, with limited use of MRI in 
this context. Through this review, it is emphasized that MRI, aided by 
machine learning, may potentially be employed as effectively as CT 
in the diagnosis and assessment of AIS. The application of AI in MRI 
of stroke has demonstrated significant progress in tasks such as image 
segmentation, classification, and prediction. These advancements offer 
the potential to improve the accuracy and efficiency of stroke diagno-
sis and treatment planning. However, it is crucial to acknowledge that 
there is a range of algorithm performances. These variations may be 
attributed to the use of different accuracy measures, the evaluation of 
various systems against diverse standards, and the utilization of input 
data with varying qualities. Such disparities can result in inconsistent 
and potentially biased differences in study conclusions. To ensure the 

robustness of these findings, it is imperative to further validate and 
generalize the results of AI studies in stroke by including larger and 
more diverse patient cohorts. In the future, we anticipate witnessing an 
increased number of ML techniques applied in MRI, particularly with 
a focus on acute ischemic stroke.
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